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Abstract— The two control design methods for stabilizing 

discrete time systems are based on the notion of exact 

linearization with diffemorphism and feedback. On the one hand, 

the first method consists in developing a polynomial control law 

based on the exact linearization approach.  This approach was 

developed by considering the concept of relative degree. On the 

other hand, the second method is based on the methodology of 

control by state-return for which there is a linearizing 

transformation of the looped system.  

These approaches are based on the reversing trajectory method 

in order to estimate the asymptotic stability region around an 

operating point. The effectiveness of the suggested methods is 

tested by numerical examples of the CSTR chemical reactor 

described by a strongly non-linear model.   
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I. INTRODUCTION 

The theory of analysis and synthesis of the dynamic 

systems has seen significant developments during the last 

years [1]-[2]. These developments are related to various 

aspects of the automatic control and, in particular, the 

nonlinear control. In this communication, we are interested in 

a comparative study of two nonlinear control approaches. 

The first approach is developed in the context of 

differential geometry. This method aims to transform the 

original nonlinear system into an exact linear equivalent 

model via a state feedback and a coordinate transformation 

[3]-[4]. In fact, the formalism of exact feedback linearization 

is growing in popularity. 

This approach was developed by considering the concept of 

relative degree r. 

The relative degree is of an increasing importance to define 

the strategies of possible control for the nonlinear process [5]. 

In fact, when the relative degree is inferior to the order of the 

studied system; it is possible to establish a dynamic 

compensator that can be bounded or unbounded. 

When it is bounded, the variables of the compensator 

taking part in the characterization of diffeomorphism and 

feedback may help to ensure a control for the trajectory 

tracking [3]. On the other side of the coin, the objective of the 

control is too ambitious. In fact, all that one can do is a simple 

regulation in the neighborhood of an operating point. 

The second method is based on the methodology of control 

by state-return for which there is a linearizing transformation 

of the looped system. However, it proves to be more 

advantageous than the first control in the case of regulation in 

minimum time [6]. 

However, the control synthesis in the discrete-time domains 

requires powerful analytical tools especially for the class of 

nonlinear systems [3], [5]-[7]. It is intended to develop an 

original strategy to study and analyze the control of discrete 

time nonlinear systems. 

This communication is organized in the following way: the 

approach of exact linearizing control is presented in the first 

part. The second part is devoted to the study and the synthesis 

of the analytical control approach. Moreover, the design 

methodology takes advantage of the Reversing Trajectory 

Method (RTM) in order to maximize the domain of attraction 

around the operating point [8]. 

The last part is dedicated to the validation by simulation of 

the proposed comparative study which is applied it to a 

nonlinear model of a CSTR chemical reactor [9].  

 

II. THE EXACT LINEARIZING CONTROL APPROACH 

A.  Theoretical formalism of the exact linearizing control  

 If we consider the refined mono-variable nonlinear system 

given by the following equation system: 
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+ = +


=
                   (1)                                                           

where 0,1,...k = is the discrete-time index, n
kX ∈ℜ is the 

vector of state variables, m
kU ∈ℜ  is the input variable and 

y ∈ℜ  is the output variable. The field of ( ).F  and ( ).G  are 

supposed to be nonlinear of an unknown analytical form,  

( ).h  is also an unknown nonlinear analytical function. 

Definition: 
For system (1), let us denote by � the usual composition of 

the function and, recursively, define the following functions: 

                             
( ) ( )

( ) ( )

0

1
,

k k

k k
k k k

h X h X

h X U h F X
−

 =


= �

                    (2)                                                                

with 1k ≥ . The relative degree r of system (1) in the 

neighborhood of 0X is defined as the smallest integer for 

which: 

                      

( )
,0

, 0

k

r
k k

k X

h X U
U

∂
≠

∂
                    (3)                                                                

                                                        

on ( )nℜ ×ℜ . The relative degree r determines the time 

delay of the input signal U before it can influence the system 

output y. 

The problem in linearization by looping is to find smooth 

functions ( ).q and ( ).p with ( ),0 0kq X ≠
 
is a 

diffeomerphism T with ( ),0 0kT X = . 

as we are given the mono-variable nonlinear system (1) of 

relative degree r in ,0kX  [3]-[4], we may pose : 

                           

( ) ( )

( ) ( )

( ) ( )

1

2

1

k k

k F k

r
r k F k

T X h X

T X L h X

T X L h X−

 =


=


 =

�
                      (4)                                                                                         

When the relative degree is r n< in ,0kX , one can put the 

system in a particular form that it is called the normal form, it 

is then possible to find  ( )n r−  functions ( ) ( )
1r k n kT X T X

+
…  

where the value of the functions in ,0kX
 
can be chosen as: 

                        
( )

( ) ( ), 0
i k

k G i k

k

T X
G X L T X

X

∂
= =

∂
            (5) 

                                                            

for 1r i n+ ≤ ≤  

( )G i kL T X indicates the derivative of Lie of the function 

( )i kT X  compared with ( )kG X . 

The expression of diffeomorphism  ( )kT X  can be written 

then as: 

                    

( )
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( )

( )
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k
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i k

n r k

h X

L h X

T X L h X
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 
 
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 

=  
 
 
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 
  

�

�

                           (6)

 

The expression of the dynamic compensator ( )i kXξ  of 

( )n r− components is determined by solving equation (5). 

The transformed variables: ( )k kZ T X= , the resulting control 

system by a linear system, are equivalent to Brunovsky of the 

form:   

                      ( ) ( )1k k k k kZ M X Z N X v+ = +                     (7)    

                           

 Where the pair ( ),M N is controllable. The new state kZ is 

called linearizing state and the control law kv is a linearizing 

control law   and, thus, we have: 

                                  ( ) ( )k k k kv p X q X U= +                        (8) 

where also: 

 

        
( )
( ) ( )

( ) ( )k k
k k k

k k

p X v
U X X

q X q X
α β= − + = +              (8)                

B.  Polynomial approach of the synthesis of the exact  

linearizing control   

When the variables of the dynamic compensator 

synthesized by equation (5) are not bounded, it would be 

possible only to ensure a regulation around the desired 

operation. The trajectory tracking is henceforth an 

unrealizable objective using a feedback built around the 

variables of the compensator.  

The objective of this paragraph is to develop an analytical 

technique allowing for the synthesis of the linearizing 

feedback when the relative degree r is strictly lower than order 

n of the system and when the states of the dynamic 

compensator are not bounded. 

 

1)  Synthesis of the variation polynomial model:   

 

Let us consider the following variable change: 
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,

,

k k k n

k k k n

x X X

u U U

= −


= −
                            (9)                                                                                                            

where ,k nX the state vector in an operating is point and 

,k nU is the control. 

The model of nonlinear variation polynomial model is 

expressed by the following equation: 

 

             
[ ] [ ]( )1

1 0

i j

k i j m kk k
i j

x f x g I x u+
≥ ≥

= + ⊗∑ ∑             (10)                     

where: 

k
x : is the variation state vector 

k
u : is the control vector 

 

2)  Characterization of the feedback dynamic 

 

 When writing in the form of a polynomial development of 

the dynamic feedback u which meets the needs of the 

linearizing exact input-output control, we will get: 

      

( )
( ) ( )1 1

1
r

f k

k kr r

g f k g f k

L h x
u v

L L h x L L h x− −
= − +

               (11)
 

Where we consider that the quantities ( )r

f k
L h x and 

( )1r

g f k
L L h x−

 are expressed by the following quantities: 

 

                           

( ) [ ]

( ) [ ]

1

1

0

ir

f k i k

i

jr

g f k j k

j

L h x L x

L L h x J x

=

−

=

 =



=


∑

∑                (12)
 

 

The control v can be determined by a simple placement of 

the poles. It becomes then: 

 

 
                      

( ) [ ]

1

s

k k s k

s

v KT x K T x
=

= − − ∑                (13)
 

where [ ]1 2 n
K k k k= …  is the gain vector of the 

control which is determined by the placement of the poles. 

The synthesis of the polynomial writing of the feedback 

which is obtained by the combination of the various equations 

lets us express in the following form:

                                         
                          

[ ] [ ]

1 0

i j

k i k j k

i j

u x xχ µ
= =

= +∑ ∑                  (14) 

with: 

 

( )

( )

1

1 0 1

1
1

0

1

1
i

i i i p p

p

J L

J L J i

χ

χ χ

−

−
−

−
=




=




  = − ⊗ ≥   
∑

�  

and  

     

( )

( )

1

1 0 1

1
1

0

0

1
j

j j j p p

p

J KT

J KT J j

µ

µ µ

−

−
−

−
=




=




  = − ⊗ ≥   
∑

�  

 

By replacing 
ku with its polynomial expression defined by 

system (14) in the equation (10), we easily obtain the 

autonomous form of this model which is expressed under the 

form:

    

                                 
[ ]

1

1

r
i

k i k

i

x P x+
=

=∑                              (15)
 

Where: 

( )

( ) ( )

1 1 0 1 1

0 0

1
i i

i i j i j j i j

j j

P f g

P f g g i

χ µ

χ µ− −
= =


 = + +



 = + ⊗ + ⊗ ≥


∑ ∑

�

 
 

III. THE APPROACH OF THE ANALYTICAL CONTROL 

 Let us consider the following variable change defined in 

equation (9). Using the development into generalized 

expansion Taylor series and Kronecker tonsorial product, the 

model (1) can be readily transformed into a variation 

polynomial model expressed by the equation (10). 

Such a model is, after that, used to characterize the 

feedback linearizing control which ensures a regulation 

around an operating point and which shall vary along a 

desired trajectory. It is easy to express the feedback in the 

following polynomial form: 

                                       
[ ]

1

q
i

k i k

i

u xλ
=

=∑                              (16)                                                           

and a nonlinear analytic transformation  [10]-[11]: 

                              ( )1k k kz Dz x+ = = Ψ                           (17)                                  
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The design methodology consists in the search of an 

attraction domain around an operating point. 

This problem requires the setting into the autonomous form 

of the state equation (16) 

By rearranging the equations (10) and (16), we obtain the 

autonomous form given by: 

                                    
[ ]

1
1

q
i

k k
i

x A xi+
=

= ∑                             (18)                   

where  ( )
1

0

i

i i j i j j
nj

A f g Iλ
−

−
=

= + ⊗∑  

The equation defined by the analytical transformation proves 

that: 

                                  
[ ]

1
1

i

k i k
i

z x+
≥

= Ψ∑                                (19)                                           

The relation (19) truncated to an order q is noted as:                                              
 

    [ ] [ ] [ ]1 2
1 1 2

1 2

i i iq
k i i q ik k k

i i i q

z f x f x f x+
≥ ≥ ≥

= Ψ + Ψ + + Ψ∑ ∑ ∑…      (20)                           

where also                                      

( ) [ ]1 1 1
1 1 1 1

qq q q
k n k q n q q n kz f R x f R f R x+ = Ψ + + Ψ + + Ψ� �… …     (21) 

In addition, by replacing the vector kz in (17) with its 

development given by (19), it becomes: 

                           
[ ]

1
1

ii
k k i n k

i

z Dz D R x+
≥

= = Ψ∑ �                     (22)                                                         

After identifying the relations (21), (22) and by introducing 

the function ‘vec’ into the Sylvester equation, it comes 

                        ( ) ( )i i i i iA vec B C vec λΨ = +                     (23)                                                          

with 

( ) ( )[ ]( )

( )

( )

1 0 1

1
2

2
1

1
1

0

TT ii i
i n n n

i
i i

i j i j j n i n
nji

i i
i i n

T
i

i n

A R D f g R I

f g I R f R
B vec

f R

C R g

λ

λ
−

−
=

−
−

  
= ⊗ − + ⊗  

  

  
+ ⊗ + Ψ +∑  

=   
 

+ Ψ 

 
= ⊗ 
 

…

      

the relation (23) leads to: 

                           ( ) ( )i i i i i ivec A B A C vec λ+ +Ψ = − +               (24)                                          

and                                                              

                          ( ) ( )i i i i ivec A C A Bλ
+

+ += −                           (25) 

where iA+
is the pseudo-inverse of iA  

The readers can refer to [11] for more details. 

IV. THE DISCRETE REVERSING TRAJECTORY METHOD 

 

The discrete RTM is theoretically exploitable for any 

locally stable nonlinear system. Moreover, it proves its 

effectiveness through the advantage of being numerically 

implementable for high nature systems. What is more, one 

may also note that the performance of this method largely 

depends on the determination of an asymptotically small 

initial area which will be used as an initial field for integration 

in opposite direction [8], [12]-[13].  This approach considers 

an initial field of asymptotic stability around an equilibrium 

point to execute, thereafter, reversing iterations allowing 

widening the initial field of the considered stability.  

Let us consider the recurrent autonomous state equation 

expressed by: 

                        
( ) [ ]

1

1

q
i

k k i k

i

x S x S x+
=

= =∑                           (26) 

where , 1,....,iS i q=   are the dimension matrices ( )i
n n× ,  q 

a truncation order defined before 
[ ]i

kx   indicates the 

Kronecker tonsorial power of order i of the state vector 0x   

such that: 

                                 
( )0lim , 0

k
x k x

→∞
=                               (27) 

Such an area will be noted by Ω   and characterized by a 

surface Γ  . 

In the following part, we will present a theorem describing the 

application of the RTM to the case of discrete-time nonlinear 

systems. 

The method that we use to determine the attraction domain of 

radius 0R  is based on the following theorem [14]: 

Theorem: ASR Ω  is an invariant and an open unit. 

 We take into consideration the discrete nonlinear system 

defined by the following recurrent state equation: 

                             
( )1 1 ,k k kx S X f k x+ = +                        (28) 

We suppose that the linear part of the model defined by 

equation (10) is asymptotically stable, i.e. the matrix iS   is of 

Schur and verifies the inequality: 

                             
0 0

01
k k k k

S c k kα− −≤ ∀ ≥
          

          (29)
               

c and α +∈ℜ  

The discrete time state variables of equation (28) are 

exponentially stable in the ball ( )0,B o R . 

 where 0R  is the unique positive solution of the following 

equation [11]: 

PC
Typewriter
80



                      
1 1

0

2

1
0

q
k k

k

k

c S R
c

α− −

=

−
− =∑                       (30) 

It may be expressed in the following form:
 

                          
( ) ( )1

1 1k k kx S x xπ−
+ += =

                     
 (31)

   

where ( ).π is a polynomial vector function which can be 

developed into generalized Taylor series. Then, we have  

                                  

[ ]
1

1

q
i

k i k

i

x xπ +
=

=∑                              (32)                                                                                                            

where , 1, 2, ,i i qπ = …  are matrices of dimensions 

[ ]( )i
n n× . 

By identifying the matrices 
i

π in Eq. (32) and by 

generating the relation ( )( )1 1k kS x xπ + += , we obtain the 

following recurrent relations: 

               

1 1

1 1 1

1 1 2 1

2 2 1 2

1
1 1

1

1

q
i

q q i q

i

s

S S

π π π

π π π π

π π π

−

−

−
−

=

 = =


= = −




  = = −    
∑

�                         (33)                                                                                                

Where the matrices
i

p
π , for 2, ,i q= … and 

2, ,p q= … are given by: 

                       

( )

( )

1
2 1 1

1

1
1 1

1

p

p p j j

j

p i
i i

p p j j

j

π π π

π π π

−

−
=

− +
−
−

=


= ⊗





 = ⊗


∑

∑

�                        (34)                                                                                                  

The asymptotic stability region estimation of the system Eq. 

(26) using the RTM involves six steps which are described in 

details in [15] - [16]: 

V.  APPLICATION OF THE COMPARATIVE STUDY TO A CSTR 

REACTOR 

 

As it has already been mentioned, the objective of this 

communication is a comparative study between two control 

approaches of a CSTR chemical reactor. 

 

A. Representation of the state 

  We study, in this section, a nonlinear model of the shown 

irreversible chemical reactor. The process model can be 

written as: 

( )

( )
( ) ( )

0

0

exp

exp

A r
Af A A

r

r A
f A j

r p p r

dC Q E
C C k C

dt V RT

HQ UdT E
T T k C T T

dt V C RT C Vρ ρ

  
= − − − 

 


−∆   = − + − + −   

     (36) 

Where 3/AC mol m 
 

 is the concentration of the A 

component in the reactor, [ ]T K is the reactor temperature, 

while the input of the process is jT : the temperature of the 

rector jacket. 

The considered controlled output y of the process is the 

reactor temperature T. The parameters and their nominal 

values are given in [17]. Let us consider the following 

notations: 1 AX C= , 2X T= , jU T=  and 2y X=  is the 

process output. 

The model of the reactor can be written in the following form:                                                    

2 3

1 2 3 0X E X E X E X D U
      = + + +�              (37) 

By considering a suitable selected discretization period T 

and by adopting the equation in the following approximations 

in an interval ( ), 1kT k T+   , [18]: 

                         
( ) 1 ,

2

k kX X
X t + +

=                         

                        
( ) 1 ,k kX X

X t
T

+ −
=�                             (38)                                    

                        
( ) .kU t U=                                

the following discrete model defined in the equation truncated 

to the second order can be derived: 

                                                                             

                            
[ ]2

1 1 2 0k k kkX F X F X G U+ = + +                (39) 

where
                                                                  

1

1 1
1 ,

2 2

n nI IE E
F

T T

−
   

= − +   
   

        
1

1
2 2 ,

2

nI E
F E

T

−
 

= − 
 

       
 

                                                                                
1 1

1 1
3 3 0 0, .

2 2

n nI IE E
F E G D

T T

− −
   

= − = −   
   

 

The discretization of the reactor model leads to a polynomial 

model of the form (39), where: 

1

0.9048 0

0 0.7322
F =

 
  

 

2

0 0.042 0.042 0.0011

0 0.807 0.807 0.2138
F

− − −
=
 
  
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3

0.0037 0 0.0037 0.0037 0.0009
0
3 2 0.7126 0 0.7126 0.7126 0.1806

F
− − − −

= ×
 
  

0

0

0.1812
G =

 
  

 

The polynomial development (truncated to the third order) 

of the reactor model around an operating point ( ), ,,k n k nX U  

entails the following nonlinear variation model:
                                                                                  

                 
[ ]2

1 1 2 0k k kkx f X f x g u+ = + +
                            (40)

 

B. Study of the first approach  

 
     

The relative degree of the system is, thus, equal to 1 which 

is strictly lower than the system control. The dynamics of the 

system (15) is so decomposed into an input-output part and an 

unobservable internal one. By using the change of coordinates 

(6), the model of the reactor will be transformed into the 

normal form which is written as: 

                                                      

                          ( ) ( )( )2, 1

t

k k kT X X Xξ=                       (41) 

An expression of the dynamic compensator is determined 

by solving the equation (5). A possible solution for this 

problem is translated by the equation (33) which spells: 

                                 ( )1 1, 2,k k kX X Xξ =                          (42)                

As it was already mentioned, the objective of this work is 

to ensure the tracking trajectory by the reaction temperature of 

the chemical reactor. 

The expression of diffeomorphism is described by the 

equation (42) which is developed under a polynomial form 

truncated to the third order: 

                    ( ) [ ] [ ]2 3

1 2 3k k k kT x T x T x T x= + +                       (43)                             

The control is also expressed in the following form: 

                         

[ ] [ ] [ ] [ ]2 3 2 3

1 2 3 1 2 3k k kk k k ku x x x x x xα α α µ µ µ= + + + + +     (44)        

 

C. Study of the second  approach  

 

The problem of control is meant to determine the feedback 

law. Hence, it easy to express the nonlinear state feedback 

controls law in this polynomial form: 

                       
[ ] [ ]2 3

1 2 3k k k ku x x xλ λ λ= + +
    

                   (45)
                     

The system feedback is described by the linear system  

                                     1k kz Dz+ =                                   (46)                                                 

where kz  is used to express the polynomial form 

                                                                              
[ ] [ ]2 3

2 3k k k kz x x x= + Ψ + Ψ                    (47)                 

The application of the suggested approach leads to: 

The matrix 1λ   is selected providing that the dynamics of the 

linear system defined by a double pole in the module is equal 

to 0.63. This yields [ ]1 -0.1 0.16λ = . 

The matrices 2Ψ and 3Ψ  and the Co-vectors 2λ and 3λ  

are determined by using the relations (24) and (25) are: 

2

0.3086 0.8252 0.0493 0.1827

0.0928 0.1044 0.0593 0.0952

− − − 
Ψ =  − −   

3

0.0190 0.0835 0.0196 0.0458 0.0018 0.0068 0.0047 0.0031

0.0169 0.0458 0.0096 0.0025 0.0047 0.0047 0.0093 0.0015

− − − − − − 
Ψ = − − − − −  

[ ]2 0.1631 0.0543 0.0878 0.0335λ = − − − −
 

[ ]3 1.2924 0.2590 0.0426 0.0317 0.2590 0.0693 0.0317 0.0325λ = − − − − − −

   

D. Study of the second  approach  

This study is developed via the exploitation of Matlab 

Toolbox control. 

The polynomial input-output linearizing control defined by 

the equations (35) and (36) was implemented in order to 

ensure the regulation of the process around the operating point   

( )3
,1 ,20.98 / , 320k n k nX mol m X K= = . 

The simulation results are given by the figures 1, 2 and 3. 

On these figures, there is a dynamic behavior characterized by 

satisfactory performances regarding the regulation of the 

controlled variables. Indeed, we may notice that the simulated 

variation variables quickly go back to the origin (in a few 

seconds) and that the recorded excesses remain within the 

tolerated limits. We note that the study of the variation 

variable by the analytical approach returns to the origin more 

quickly than the variation variable by the exact linearization 

approach. 

Besides, the control signal, which is represented by figure 3, 

is characterized by a completely acceptable variation in the 

process. 

In figures 4 and 5, we show the ASR which is obtained by 

means of the reverse trajectory approach. The initial 

conditions for integrating the reverse autonomous polynomial 

system are taken on the circular bound of the Initial 

Asymptotic Stability Region around an operating point 

applied to these two methods.  
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Fig. 1  Evolution of the variation variable ,1kx  

    

 

Fig. 2   Evolution of the variation variable ,2kx  

 

 

Fig. 3   Evolution of the control variable 

 

Fig. 4   Enlargement of the ASR using the RTM of the first approach 

 

Fig. 5   Enlargement of the ASR using the RTM of the second approach 

 

VI. CONCLUSION 

A comparative study is conducted between the exact 

linearization control and the analytical control. 

 The first is based on the concept of relative degree and the 

second is based on the formalism of the linearization feedback.  

These approaches are mainly based on the use of the 

expansion Taylor series and the Kronecker tonsorial power. 

The advantage of the analytic approach can be summarized in 

the fact that one can analyze the nonlinear discrete control 

problem in a generic context. Furthermore, the pre-specified 

performances are studied based on the reference linear model. 

The asymptotic stability region in the neighborhood of the 

operating point is larger than the region obtained by the local 

linearized model. This is a powerful characteristic of the 

proposed approach since it can be implemented to gain a 

scheduling technique without requiring many operating points 

in the tracked trajectory. 

The implementation of the suggested technique to the 

control of a CSTR reactor showed a perfect performance. This 

technique can ensure a sound control of the nonlinear process 
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